同时,大尺度的涡旋从主流吸取动能,在运动过程中传递给较小尺度的涡旋,这样逐级传递,一直到微尺度的涡旋。在较大尺度的涡运动中,流体粘性几乎不起作用,可忽略不计,因而在动能传递中几乎没有能耗;而在微尺度的涡旋运动中,流体粘性将起主要作用,传送到这些低级涡旋的能量就会通过粘性作用转化为热能。水流中同时存在无数大大小小的涡旋,产生一系列的脉动频率,具有连续的频谱。
众多的水处理工作者均认为:只有具有与颗粒尺寸相同数量级的涡旋才对碰撞有效,其它的不起作用。由于实际的絮体颗粒尺寸变化幅度是1-1000um,因此,有很大一段的涡旋起作用,不能严格划分大小涡旋的界限。紊动的扩散作用主要取决于大尺度的紊动。大涡旋的尺度可以认为与折板单元的尺度数量级相同。折板单元连续的缩放,使水流形成大量不同尺度的涡旋,促进了水流内部絮体颗粒间的相对运动,增加了碰撞机会,所以相对于隔板絮凝池,絮凝效果大大提高。
折板絮凝池的设计主要控制参数是水流速度、水头损失和絮凝时间,但建成后往往发现实际运行参数与设计值相差甚远。以水头损失的计算为例,设计手册中,其计算采用的是明渠渐扩和渐缩公式,有人通过研究发现,竖流折板絮凝池水头损失实测值与设计计算值相差较大,实测值明显小于设计计算值。
开发新型、、安全的絮凝剂,深入研究絮凝基础理论及其控制技术,现已成为一门迅速发展的科学与技术。絮凝过程是一个复杂的动态过程,尽管要地表达某一水质、絮凝剂和水流流态特性因素对絮凝效果的影响还存在很大的困难,但随着多学科技术集成度的提高以及实际应用的需要,预计折板絮凝研究将在如下方面有所发展:
合理地选定和优化混凝工艺,不仅会提高出水水质,还能达到节能、节药及降低运行费用的目的。往复式隔板絮凝池是依靠水流在廊道间的往返流动,使颗粒碰撞聚集。实际运行资料表明,有些絮凝池在运行过程中絮凝效果不佳,致使后续工艺的出水水质远低于设计水平。国内外常用的方法是将CFD 模型应用到絮凝过程中,并已经证明CFD对絮凝模拟的实用有效性。通过絮凝动力学的研究,得到了絮凝中重要参数速度梯度值(G值)随时间的变化规律,并将CFD模型应用到往复式隔板絮凝池的设计过程中,通过流体力学软件FLUENT的数值模拟,得到了往复式隔板絮凝池内部水流的状态和内部的流场,并对模拟结果进行了深入的分析,定性分析水流状态对絮凝处理效果的影响。
为使水流中的颗粒相互碰撞,就使其与水流产生相对运动。水中的颗粒与水流产生相对运动好的办法是改变水流的速度。改变速度的方法有两种:①改变水流速度时造成的惯性效应来进行凝聚;②改变水流方向。在湍流中充满着大大小小的涡旋。其中大涡旋能够使流体进一步的掺混,使颗粒均匀扩散于流体中;同时创造大量的小漩涡,并将能量输出给小涡旋。而小涡旋的作用是促进颗粒的碰撞,提高絮凝效率。微涡旋理论认为:水中微涡旋尺度与矾花颗粒尺度相近时混凝反应充分。而小涡旋的动力学致因是惯性效应,特别是湍流涡旋的离心惯性效应,由此可见湍流中微小涡旋的离心惯性效应是絮凝的重要动力学致因。
好的絮凝效果不仅需要大量的颗粒碰撞,还需要控制颗粒进行合理有效的碰撞,使颗粒聚集起来。速度梯度是絮凝过程中常用的控制动力学因素。根据絮凝动力学理论得知,絮凝过程中的速度梯度值是逐渐减小的;而且开始时刻的速度梯度值要求能与混合阶段衔接上,所以一般要求较大。这时的絮凝也要求接触和碰撞,但是由微涡旋理论可知要求的水力半径要适合于自身的直径,才能发生有效碰撞。理论上,搅拌强度越大,速度梯度越大,相互接触碰撞的机会越多。但搅拌强度大(G值大),水流的剪切力就大,松散的絮体受到水流剪切会二次断开成为小絮体。因此要求搅拌的强度(也就是速度梯度)随着絮凝的进行而逐渐变小。整个混凝的过程中,G值是递减的。但是速度梯度递减规律,国内外的还没有定论。
矩形往复式絮凝池中普遍存在死水区,死水区的存在,不仅容易形成沉积物的堆积,而且严重阻碍了水流的运动。特别是在絮凝后期,水流速度逐渐减小时,死水区对水流有越来越大的的负面影响。而圆弧形渠道,几乎不存在死水区,可以有效的消除死水区带来的负面影响。且圆弧区的水流速度也比矩形渠道的分布均匀,有利于节约能耗。
圆弧形渠道能够减小渠道转弯处的速度,减少能耗。而且,圆弧形渠道能够产生很多复杂的涡旋结构,提高絮凝效率。通过两个方案中转弯处X 方向速度的对比证明,圆弧形拐弯往复式絮凝器的速度梯度变化规律更加合理,混凝效果更好。